Skip to main content

C++ Overloading (Function and Operator)

C++ Overloading (Function and Operator)

If we create two or more members having the same name but different in number or type of parameter, it is known as C++ overloading. In C++, we can overload:

  • methods,
  • constructors, and
  • indexed properties

It is because these members have parameters only.

Types of overloading in C++ are:

  • Function overloading
  • Operator overloading
C++ Overloading

C++ Function Overloading

Function Overloading is defined as the process of having two or more function with the same name, but different in parameters is known as function overloading in C++. In function overloading, the function is redefined by using either different types of arguments or a different number of arguments. It is only through these differences compiler can differentiate between the functions.

The advantage of Function overloading is that it increases the readability of the program because you don't need to use different names for the same action.

C++ Function Overloading Example

Let's see the simple example of function overloading where we are changing number of arguments of add() method.

// program of function overloading when number of arguments vary.

  1. #include <iostream>    
  2. using namespace std;    
  3. class Cal {    
  4.     public:    
  5. static int add(int a,int b){      
  6.         return a + b;      
  7.     }      
  8. static int add(int a, int b, int c)      
  9.     {      
  10.         return a + b + c;      
  11.     }      
  12. };     
  13. int main(void) {    
  14.     Cal C;                                                    //     class object declaration.   
  15.     cout<<C.add(10, 20)<<endl;      
  16.     cout<<C.add(12, 20, 23);     
  17.    return 0;    
  18. }    

Output:

30
55

Let's see the simple example when the type of the arguments vary.

// Program of function overloading with different types of arguments.

  1. #include<iostream>  
  2. using namespace std;  
  3. int mul(int,int);  
  4. float mul(float,int);  
  5.   
  6.   
  7. int mul(int a,int b)  
  8. {  
  9.     return a*b;  
  10. }  
  11. float mul(double x, int y)  
  12. {  
  13.     return x*y;  
  14. }  
  15. int main()  
  16. {  
  17.     int r1 = mul(6,7);  
  18.     float r2 = mul(0.2,3);   
  19.     std::cout << "r1 is : " <<r1<< std::endl;  
  20.     std::cout <<"r2 is : "  <<r2<< std::endl;  
  21.     return 0;  
  22. }  

Output:

r1 is : 42
r2 is : 0.6  

Function Overloading and Ambiguity

When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as function overloading.

When the compiler shows the ambiguity error, the compiler does not run the program.

Causes of Function Overloading:

  • Type Conversion.
  • Function with default arguments.
  • Function with pass by reference.
C++ Overloading
  • Type Conversion:

Let's see a simple example.

  1. #include<iostream>  
  2. using namespace std;  
  3. void fun(int);  
  4. void fun(float);  
  5. void fun(int i)  
  6. {  
  7.     std::cout << "Value of i is : " <<i<< std::endl;  
  8. }  
  9. void fun(float j)  
  10. {  
  11.     std::cout << "Value of j is : " <<j<< std::endl;  
  12. }  
  13. int main()  
  14. {  
  15.     fun(12);  
  16.     fun(1.2);  
  17.     return 0;  
  18. }  

The above example shows an error "call of overloaded 'fun(double)' is ambiguous". The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.

  • Function with Default Arguments

Let's see a simple example.

  1. #include<iostream>  
  2. using namespace std;  
  3. void fun(int);  
  4. void fun(int,int);  
  5. void fun(int i)  
  6. {  
  7.     std::cout << "Value of i is : " <<i<< std::endl;  
  8. }  
  9. void fun(int a,int b=9)  
  10. {  
  11.     std::cout << "Value of a is : " <<a<< std::endl;  
  12.     std::cout << "Value of b is : " <<b<< std::endl;  
  13. }  
  14. int main()  
  15. {  
  16.     fun(12);  
  17.    
  18.     return 0;  
  19. }  

The above example shows an error "call of overloaded 'fun(int)' is ambiguous". The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).

  • Function with pass by reference

Let's see a simple example.

  1. #include <iostream>  
  2. using namespace std;  
  3. void fun(int);  
  4. void fun(int &);   
  5. int main()  
  6. {  
  7. int a=10;  
  8. fun(a); // error, which f()?  
  9. return 0;  
  10. }  
  11. void fun(int x)  
  12. {  
  13. std::cout << "Value of x is : " <<x<< std::endl;  
  14. }  
  15. void fun(int &b)  
  16. {  
  17. std::cout << "Value of b is : " <<b<< std::endl;  
  18. }  

The above example shows an error "call of overloaded 'fun(int&)' is ambiguous". The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &).

C++ Operators Overloading

Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.

The advantage of Operators overloading is to perform different operations on the same operand.

Operator that cannot be overloaded are as follows:

  • Scope operator (::)
  • Sizeof
  • member selector(.)
  • member pointer selector(*)
  • ternary operator(?:)

Syntax of Operator Overloading

  1. return_type class_name  : : operator op(argument_list)  
  2. {  
  3.      // body of the function.  
  4. }  

Where the return type is the type of value returned by the function.

class_name is the name of the class.

operator op is an operator function where op is the operator being overloaded, and the operator is the keyword.

Rules for Operator Overloading

  • Existing operators can only be overloaded, but the new operators cannot be overloaded.
  • The overloaded operator contains atleast one operand of the user-defined data type.
  • We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.
  • When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.
  • When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments.

C++ Operators Overloading Example

Let's see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).

// program to overload the unary operator ++.

  1. #include <iostream>    
  2. using namespace std;    
  3. class Test    
  4. {    
  5.    private:    
  6.       int num;    
  7.    public:    
  8.        Test(): num(8){}    
  9.        void operator ++()         {     
  10.           num = num+2;     
  11.        }    
  12.        void Print() {     
  13.            cout<<"The Count is: "<<num;     
  14.        }    
  15. };    
  16. int main()    
  17. {    
  18.     Test tt;    
  19.     ++tt;  // calling of a function "void operator ++()"    
  20.     tt.Print();    
  21.     return 0;    
  22. }    

Output:

The Count is: 10

Let's see a simple example of overloading the binary operators.

// program to overload the binary operators.

  1. #include <iostream>  
  2. using namespace std;  
  3. class A  
  4. {  
  5.     
  6.     int x;  
  7.       public:  
  8.       A(){}  
  9.     A(int i)  
  10.     {  
  11.        x=i;  
  12.     }  
  13.     void operator+(A);  
  14.     void display();  
  15. };  
  16.   
  17. void A :: operator+(A a)  
  18. {  
  19.      
  20.     int m = x+a.x;  
  21.     cout<<"The result of the addition of two objects is : "<<m;  
  22.   
  23. }  
  24. int main()  
  25. {  
  26.     A a1(5);  
  27.     A a2(4);  
  28.     a1+a2;  
  29.     return 0;  
  30. }  

Output:

The result of the addition of two objects is : 9 



Anurag Rana

Comments

Popular posts from this blog

JAVA Scrollbar, MenuItem and Menu, PopupMenu

ava AWT Scrollbar The  object  of Scrollbar class is used to add horizontal and vertical scrollbar. Scrollbar is a  GUI  component allows us to see invisible number of rows and columns. AWT Scrollbar class declaration public   class  Scrollbar  extends  Component  implements  Adjustable, Accessible   Java AWT Scrollbar Example import  java.awt.*;   class  ScrollbarExample{   ScrollbarExample(){               Frame f=  new  Frame( "Scrollbar Example" );               Scrollbar s= new  Scrollbar();               s.setBounds( 100 , 100 ,  50 , 100 );               f.add(s);               f.setSize( 400 , 400 );               f.setLayout( null );               f.setVisible( true );   }   public   static   void  main(String args[]){           new  ScrollbarExample();   }   }   Output: Java AWT Scrollbar Example with AdjustmentListener import  java.awt.*;   import  java.awt.event.*;   class  ScrollbarExample{        ScrollbarExample(){               Frame f=  new  Frame( "Scro

Difference between net platform and dot net framework...

Difference between net platform and dot net framework... .net platform supports programming languages that are .net compatible. It is the platform using which we can build and develop the applications. .net framework is the engine inside the .net platform which actually compiles and produces the executable code. .net framework contains CLR(Common Language Runtime) and FCL(Framework Class Library) using which it produces the platform independent codes. What is the .NET Framework? The Microsoft .NET Framework is a platform for building, deploying, and running Web Services and applications. It provides a highly productive, standards-based, multi-language environment for integrating existing investments with next-generation applications and services as well as the agility to solve the challenges of deployment and operation of Internet-scale applications. The .NET Framework consists of three main parts: the common language runtime, a hierarchical set of unified class librari

C++ this Pointer, static, struct and Enumeration

C++ this Pointer In C++ programming,  this  is a keyword that refers to the current instance of the class. There can be 3 main usage of this keyword in C++. It can be used  to pass current object as a parameter to another method. It can be used  to refer current class instance variable. It can be used  to declare indexers. C++ this Pointer Example Let's see the example of this keyword in C++ that refers to the fields of current class. #include <iostream>    using   namespace  std;   class  Employee {       public :           int  id;  //data member (also instance variable)               string name;  //data member(also instance variable)            float  salary;          Employee( int  id, string name,  float  salary)             {                   this ->id = id;                  this ->name = name;                  this ->salary = salary;            }             void  display()             {                 cout<<id<< "  " <<name<&