Skip to main content

Knowledge Engineering in First-order logic

What is knowledge-engineering?

The process of constructing a knowledge-base in first-order logic is called as knowledge- engineering. In knowledge-engineering, someone who investigates a particular domain, learns important concept of that domain, and generates a formal representation of the objects, is known as knowledge engineer.

In this topic, we will understand the Knowledge engineering process in an electronic circuit domain, which is already familiar. This approach is mainly suitable for creating special-purpose knowledge base.

The knowledge-engineering process:

Following are some main steps of the knowledge-engineering process. Using these steps, we will develop a knowledge base which will allow us to reason about digital circuit (One-bit full adder) which is given below

Knowledge Engineering in First-order logic

1. Identify the task:

The first step of the process is to identify the task, and for the digital circuit, there are various reasoning tasks.

At the first level or highest level, we will examine the functionality of the circuit:

  • Does the circuit add properly?
  • What will be the output of gate A2, if all the inputs are high?

At the second level, we will examine the circuit structure details such as:

  • Which gate is connected to the first input terminal?
  • Does the circuit have feedback loops?

2. Assemble the relevant knowledge:

In the second step, we will assemble the relevant knowledge which is required for digital circuits. So for digital circuits, we have the following required knowledge:

  • Logic circuits are made up of wires and gates.
  • Signal flows through wires to the input terminal of the gate, and each gate produces the corresponding output which flows further.
  • In this logic circuit, there are four types of gates used: AND, OR, XOR, and NOT.
  • All these gates have one output terminal and two input terminals (except NOT gate, it has one input terminal).

3. Decide on vocabulary:

The next step of the process is to select functions, predicate, and constants to represent the circuits, terminals, signals, and gates. Firstly we will distinguish the gates from each other and from other objects. Each gate is represented as an object which is named by a constant, such as, Gate(X1). The functionality of each gate is determined by its type, which is taken as constants such as AND, OR, XOR, or NOT. Circuits will be identified by a predicate: Circuit (C1).

For the terminal, we will use predicate: Terminal(x).

For gate input, we will use the function In(1, X1) for denoting the first input terminal of the gate, and for output terminal we will use Out (1, X1).

The function Arity(c, i, j) is used to denote that circuit c has i input, j output.

The connectivity between gates can be represented by predicate Connect(Out(1, X1), In(1, X1)).

We use a unary predicate On (t), which is true if the signal at a terminal is on.

4. Encode general knowledge about the domain:

To encode the general knowledge about the logic circuit, we need some following rules:

  • If two terminals are connected then they have the same input signal, it can be represented as:
  1. ∀  t1, t2 Terminal (t1) ∧ Terminal (t2) ∧ Connect (t1, t2) → Signal (t1) = Signal (2).   
  • Signal at every terminal will have either value 0 or 1, it will be represented as:
  1. ∀  t Terminal (t) →Signal (t) = 1 ∨Signal (t) = 0.  
  • Connect predicates are commutative:
  1. ∀  t1, t2 Connect(t1, t2)  →  Connect (t2, t1).       
  • Representation of types of gates:
  1. ∀  g Gate(g) ∧ r = Type(g) → r = OR ∨r = AND ∨r = XOR ∨r = NOT.   
  • Output of AND gate will be zero if and only if any of its input is zero.
  1. ∀  g Gate(g) ∧ Type(g) = AND →Signal (Out(1, g))= 0 ⇔  ∃n Signal (In(n, g))= 0.   
  • Output of OR gate is 1 if and only if any of its input is 1:
  1. ∀  g Gate(g) ∧ Type(g) = OR → Signal (Out(1, g))= 1 ⇔  ∃n Signal (In(n, g))= 1   
  • Output of XOR gate is 1 if and only if its inputs are different:
  1. ∀  g Gate(g) ∧ Type(g) = XOR → Signal (Out(1, g)) = 1 ⇔  Signal (In(1, g)) ≠ Signal (In(2, g)).  
  • Output of NOT gate is invert of its input:
  1. ∀  g Gate(g) ∧ Type(g) = NOT →   Signal (In(1, g)) ≠ Signal (Out(1, g)).  
  • All the gates in the above circuit have two inputs and one output (except NOT gate).
  1. ∀  g Gate(g) ∧ Type(g) = NOT →   Arity(g, 11)   
  2. ∀  g Gate(g) ∧ r =Type(g)  ∧ (r= AND ∨r= OR ∨r= XOR) →  Arity (g, 21).   
  • All gates are logic circuits:
  1. ∀  g Gate(g) → Circuit (g).   

5. Encode a description of the problem instance:

Now we encode problem of circuit C1, firstly we categorize the circuit and its gate components. This step is easy if ontology about the problem is already thought. This step involves the writing simple atomics sentences of instances of concepts, which is known as ontology.

For the given circuit C1, we can encode the problem instance in atomic sentences as below:

Since in the circuit there are two XOR, two AND, and one OR gate so atomic sentences for these gates will be:

  1. For XOR gate: Type(x1)= XOR, Type(X2) = XOR  
  2. For AND gate: Type(A1) = AND, Type(A2)= AND  
  3. For OR gate: Type (O1) = OR.    

And then represent the connections between all the gates.


6. Pose queries to the inference procedure and get answers:

In this step, we will find all the possible set of values of all the terminal for the adder circuit. The first query will be:

What should be the combination of input which would generate the first output of circuit C1, as 0 and a second output to be 1?

  1. ∃ i1, i2, i3 Signal (In(1, C1))=i1  ∧  Signal (In(2, C1))=i2  ∧ Signal (In(3, C1))= i3  
  2.  ∧ Signal (Out(1, C1)) =0 ∧ Signal (Out(2, C1))=1  

7. Debug the knowledge base:

Now we will debug the knowledge base, and this is the last step of the complete process. In this step, we will try to debug the issues of knowledge base.

In the knowledge base, we may have omitted assertions like 1 ≠ 0.


Anurag Rana

Comments

Popular posts from this blog

JAVA Scrollbar, MenuItem and Menu, PopupMenu

ava AWT Scrollbar The  object  of Scrollbar class is used to add horizontal and vertical scrollbar. Scrollbar is a  GUI  component allows us to see invisible number of rows and columns. AWT Scrollbar class declaration public   class  Scrollbar  extends  Component  implements  Adjustable, Accessible   Java AWT Scrollbar Example import  java.awt.*;   class  ScrollbarExample{   ScrollbarExample(){               Frame f=  new  Frame( "Scrollbar Example" );               Scrollbar s= new  Scrollbar();               s.setBounds( 100 , 100 ,  50 , 100 );               f.add(s);               f.setSize( 400 , 400 );               f.setLayout( null );               f.setVisible( true );   }   public   static   void  main(String args[]){           new  ScrollbarExample();   }   }   Output: Java AWT Scrollbar Example with AdjustmentListener import  java.awt.*;   import  java.awt.event.*;   class  ScrollbarExample{        ScrollbarExample(){               Frame f=  new  Frame( "Scro

Difference between net platform and dot net framework...

Difference between net platform and dot net framework... .net platform supports programming languages that are .net compatible. It is the platform using which we can build and develop the applications. .net framework is the engine inside the .net platform which actually compiles and produces the executable code. .net framework contains CLR(Common Language Runtime) and FCL(Framework Class Library) using which it produces the platform independent codes. What is the .NET Framework? The Microsoft .NET Framework is a platform for building, deploying, and running Web Services and applications. It provides a highly productive, standards-based, multi-language environment for integrating existing investments with next-generation applications and services as well as the agility to solve the challenges of deployment and operation of Internet-scale applications. The .NET Framework consists of three main parts: the common language runtime, a hierarchical set of unified class librari

Standard and Formatted Input / Output in C++

The C++ standard libraries provide an extensive set of input/output capabilities which we will see in subsequent chapters. This chapter will discuss very basic and most common I/O operations required for C++ programming. C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a device like a keyboard, a disk drive, or a network connection etc. to main memory, this is called   input operation   and if bytes flow from main memory to a device like a display screen, a printer, a disk drive, or a network connection, etc., this is called   output operation . Standard Input and Output in C++ is done through the use of  streams . Streams are generic places to send or receive data. In C++, I/O is done through classes and objects defined in the header file  <iostream> .  iostream  stands for standard input-output stream. This header file contains definitions to objects like  cin ,  cout , etc. /O Library Header Files There are following header files important to C++ pro